Homework 5 Solutions

Ch. 8 2,4,5,10,18,23,24

8.2

$A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}}=\frac{20 \cdot 24-0 \cdot 22}{4 \cdot 20-0^{2}}=6$
$B=\frac{N \sum x y-\sum x \sum y}{N \sum x^{2}-\left(\sum x\right)^{2}}=\frac{4 \cdot 22-0 \cdot 24}{80}=1.1$
Therefore, the equation for the line is

$$
y=1.1 x+6.0
$$

8.4

From equation 8.8,

$$
A N+B \sum x=\sum y
$$

Divide by N :

$$
A+B \frac{\sum x}{N}=\frac{\sum y}{N} \quad \text { or } \quad A+B \bar{x}=\bar{y}
$$

Therefore, the point (\bar{x}, \bar{y}) lies on the best-fit line.

8.5

For a line through the origin, $A=0$, so $\chi^{2}=\sum \frac{\left(y_{i}-B x_{i}\right)^{2}}{\sigma_{y}^{2}}$
Minimize this with respect to B: $\frac{\partial \chi^{2}}{\partial B}=\frac{-2}{\sigma_{y}^{2}} \sum x_{i}\left(y_{i}-B x_{i}\right)=0$
Therefore, $\sum x_{i} y_{i}-B \sum x_{i}^{2}=0$ or $B=\frac{\sum x y}{\sum x^{2}}$

8.10

For the weighted fit, the weights are inversely proportional to the uncertainies squared:

$$
w_{i}=\left(1 / 0.5^{2}, 1 / 0.5^{2}, 1 / 1^{2}\right)=(4,4,1)
$$

Using these weights, calculate A and B :

$$
\begin{aligned}
& A=\frac{\sum w x^{2} \sum w y-\sum w x \sum w x y}{\sum w \sum w x^{2}-\left(\sum w x\right)^{2}}=\frac{29 \cdot 22-15 \cdot 38}{9 \cdot 29-15^{2}}=1.89 \\
& B=\frac{\sum w \sum w x y-\sum w x \sum w y}{\sum w \sum w x^{2}-\left(\sum w x\right)^{2}}=\frac{9 \cdot 38-15 \cdot 22}{36}=0.33
\end{aligned}
$$

Now calculate A and B for unweighted data points:

$$
\begin{aligned}
& A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}}=\frac{14 \cdot 7-6 \cdot 14}{3 \cdot 14-6^{2}}=2.33 \\
& B=\frac{N \sum x y-\sum x \sum y}{N \sum x^{2}-\left(\sum x\right)^{2}}=\frac{3 \cdot 14-6 \cdot 7}{6}=0.00
\end{aligned}
$$

8.18

We have $B=\frac{\sum x y}{\Delta}$, where Δ does not depend on y. To calculate the uncertainty in B, we need its derivatives with respect to the y 's:

$$
\frac{\partial B}{\partial y_{i}}=\frac{x_{i}}{\Delta}
$$

Therefore, $\sigma_{B}^{2}=\frac{\sum\left(x_{i} \sigma_{y}\right)^{2}}{\Delta^{2}}=\sigma_{y}^{2} \frac{\sum x^{2}}{\left(\sum x^{2}\right)^{2}}=\frac{\sigma_{y}^{2}}{\sum x^{2}}$

$$
\sigma_{B}=\frac{\sigma_{y}}{\sqrt{\sum x^{2}}}
$$

8.23

We have $\chi^{2}=\sum\left(A f_{i}+B g_{i}-y_{i}\right)^{2} / \sigma_{y}^{2}$, where $f_{i} \equiv f\left(x_{i}\right)$ and $g_{i} \equiv g\left(x_{i}\right)$
Minimize this with respect to A and B :

$$
\frac{\partial \chi^{2}}{\partial A} \propto \sum f_{i}\left(A f_{i}+B g_{i}-y_{i}\right)=0 \quad \frac{\partial \chi^{2}}{\partial B} \propto \sum g_{i}\left(A f_{i}+B g_{i}-y_{i}\right)=0
$$

Simplify this a bit:
$A \sum f^{2}+B \sum f g=\sum f y \quad A \sum f g+B \sum g^{2}=\sum g y$
These are the equations given.

8.24

We will use the equations from the problem above. First, calculate the function at the various values of x and use this to calculate the coefficients in the equations. The results are:

$$
\sum f^{2}=2.22 \quad \sum g^{2}=2.78 \quad \sum f g=0.00 \quad \sum f y=6.48 \quad \sum g y=14.63
$$

The equations become

$$
2.22 A=6.48 \quad 2.78 B=14.63
$$

Therefore,

$$
A=2.92 \quad B=5.26
$$

The fit is rather poor - it is likely the frequency is not correct.

